彭蕾 副教授

发布时间:2018-04-29浏览次数:5565




彭蕾


职称:副教授,博士生导师

邮箱:penglei@ustc.edu.cn

电话:0551-63601141

地址:安徽合肥中国科学技术大学西区科技实验楼,230027


个人简历

1981年生于湖南娄底2003年获西安交通大学核工程与核技术专业学士学位2010获中科院等离子体所与瑞士PSI研究所联合培养核能科学与工程专业博士学位(20087月至20099月在瑞士PSI研究所任访问科学家),2010年进入中国科学技术大学核科学技术学院任副教授至今。


教学情况

反应堆材料》,主讲,专业基础课(本科/研究生),每年40学时, 2010至今

核材料实验方法》,主讲,专业基础课(研究生),每年60学时, 2012至今


科学研究

长期致力于“核科学技术A+学科”关键抗辐照材料的中子/离子/电子辐照实验及损伤机理研究,主要进行中子辐照损伤实验(难度大/周期长),以及辐照机理的电子/原子/介观/宏观多尺度数值模拟,基于国际著名材料辐照院所长期合作(利用目前世界唯一可材料辐照高能中子源—瑞士散裂中子源SINQ),系统研究抗辐照结构/屏蔽材料的中子辐照和原位损伤断裂力学的机理,探索低碳核能/深空探索等重大任务中极端环境下抗辐照材料改性方法。

完成大部分国产主流先进核材料(十多种CFETR/ADS/快堆/熔盐堆/空间堆材料)的高能散裂中子辐照实验,建成核材料辐照后分析半热室,研发了先进核材料原位损伤断裂力学研究方法及软硬件平台,在“先进核结构钢中子辐照新机理”和“抗辐照材料改性探索新方法”方面获得重要成果,发表第一/通讯SCI论文30篇(JCR一区5篇),主要成果在国际聚变堆材料大会ICFRM上做口头报告3次,培养出站博士后1人、博士5人和硕士15人。


科研项目:

  1. 国家自然科学基金面上项目,聚变堆ODS钢高能中子辐照脆化的原位损伤断裂力学研究,2022-2025,主持

  2. 安徽省基金委杰青项目,核材料辐照损伤,2021-2023,主持

  3. 科技部磁约束核聚变能发展专项项目子课题CFETR国产先进材料小样品中子辐照及结构性能测评,2019-2023,主持

  4. 国家自然科学基金联合基金项目,热-力载荷下陶瓷材料体应力及裂纹演化机制研究,2018-2020,主持

  5. 国家自然科学基金面上项目,低活化钢的中子辐照后氦效应机理研究2014-2017,主持

  6. 中科院合肥物质科学技术中心创新项目培育基金,先进反应堆结构钢的高能中子辐照损伤研究2013-2014主持

  7. 中科院战略性先导科技专项项目课题,未来先进核裂变能-ADS嬗变系统-铅铋冷却反应堆-核燃料与关键设备研制, 2011-2013,主持

  8. 科技部磁约束核聚变能发展专项人才课题,低活化钢的中子辐照损伤机制研究2011-2014主持

  9. 国家自然科学基金青年项目,中国低活化钢的聚变中子辐照损伤机制研究,2010-2012,主持



代表性论文:

  1. S. Chen, C. Zhu, Y. Shi, L. Peng*, et al, Temperature effects on strain distribution of reduced activation ferritic / martensitic steel during tensile tests Nuclear Science and Techniques (2024)

  2. L. Peng, S. Chen, J. Shi, et al, Atomistic study on the microscopic mechanism of grain boundary embrittlement induced by small dense helium bubbles in iron, Nuclear Science and Techniques 35 (2024) 55

  3. L. Peng, Y. Sun, J. Shi, et al, Grain boundary engineering for enhancing intergranular damage resistance of ferritic/martensitic steel P92, Nuclear Science and Techniques 35 (2024) 44

  4. Y. Shi, W. Zhang,L. Peng*, et al, Effect of temperature on damage mechanism and fracture behavior of LiH ceramic under 3-point bending at different loading rates, Ceramics International (2024)

  5. Y. Liu, Y. Xie, L. Peng*, et al, Irradiation Effects on Tensile Properties of Reduced Activation Ferritic/Martensitic Steel: A Micromechanical - Damage - Model - Based Numerical Investigation, Crystals 14 (2024) 417

  6. Y. Hu, L. Peng*, The temperature effect on the formation and growth of helium-vacancy clusters in bcc iron: A comprehensive molecular dynamics simulation, J. Nucl. Mater. 597 (2024)155130

  7. L. Li, Y. Hu, L. Peng*, J. Shi, et al, Helium bubble evolution under cascade in bcc iron relevant to fusion conditions investigated by a novel coupling MD-OKMC method, J. Nucl. Mater. 597 (2024)154908

  8. L. Peng*, Y. Xie, H. Ge, et al, Correlation between microstructure and hardening of 9Cr ferritic/ martensitic steels irradiated in spallation neutron source, J. Nucl. Mater. 597 (2024) 155122

  9. L. Li, L. Peng*, J. Shi, et al, A comprehensive atomistic investigation on the cascade induced helium bubble motion in bcc iron for neutron irradiated RAFM steels, J. Nucl. Mater.  578 (2023) 154373

  10. L. Peng*, D. Zhou, W. Zhang,et al, Temperature effect on short-term strength of lithium hydride with tensile and three-point bend specimens, Crystals, 12 (2022) 840

  11. Y. Sun, L. Peng*, et al, Atomistic investigation on grain boundary effect on helium segregation and clustering in iron, J. Nucl. Mater. 569 (2022) 153891

  12. W. Zhang,L. Peng*, et al, Dynamic fatigue behavior of lithium hydride at elevated temperatures, Ceramics International, 48 (2022) 10827

  13. Y. Shi, L. Peng*, et al, In Situ Evolution of Pores in Lithium Hydride at Elevated Temperatures Characterized by X-ray Computed Tomography, Crystals, 11 (2021) 1093

  14. J. Shi, Liuliu Li, L. Peng*, et al, Atomistic study on helium-to-vacancy ratio of neutron irradiation induced helium bubbles during nucleation and growth in α-Fe, Nucl. Mate. Energy 26 (2021) 100940

  15. Liuliu Li, L. Peng*, et al, Large helium-vacancy clusters coalescence during helium bubble evolution under cascade in iron with edge dislocation: A MD simulation, Computational Materials Science 197 (2021) 110601

  16. W. Zhang, Y. Xie, L. Peng*, et al, Fracture toughness determination from load-line displacement of 3-point bend specimen using 3D digital image correlation method for CLF-1 steel, J. Nucl. Mater. 543 (2021) 152565

  17. J. Shi, Xing Liu, L. Peng*, et al, Atomic-scale mechanisms of He/V ratio effect on helium bubble hardening in iron for neutron irradiated F/M steels, J. Nucl. Mater. 542 (2020) 152495

  18. Y. Xie, L. Peng*, et al, Temperature effect on fracture toughness of CLF-1 steel with miniature three-point bend specimens, J. Nucl. Mater. 531 (2020) 151992

  19. Liuliu Li, J. Shi, L. Peng*, et al, Formation and migration of helium pair in bcc Fe from first principlecalculations, Computational Materials Science 170 (2019) 109192

  20. L. Peng*, et al, Microstructure and microhardness of CLAM steel irradiated up to 20.8 dpa in STIP-V, J. Nucl. Mater. 468 (2016) 255–259

  21. H. Ge, L. Peng*, et al, Tensile properties of CLAM steel irradiated up to 20.1 dpa in STIP-V, J. Nucl. Mater. 468 (2016) 240–245

  22. S. Jiang, L. Peng*, etal, He and H irradiation effects on the nanoindentation hardness, J. Nucl. Mater. 455 (2014) 335–338

  23. L. Peng, Y. Dai, Helium-induced hardening effect in ferritic/martensitic steels F82H and Optimax-A irradiated in a mixed spectrum of high energy protons and spallation neutrons, J. Nucl. Mater. 417 (2011) 996–1000

  24. L. Peng*, et al, Swelling of CLAM steel irradiated by electron/helium to 17.5 dpa with 10 appm He/dpa, Fusion Eng. Des. 86 (2011) 2624–2626

  25. L. Peng*, et al, Preliminary Analysis of Irradiation Effects on CLAM after Low Dose Neutron Irradiation, J. Nucl. Mater. 386-388 (2009) 312-314.